This crystal belongs to the orthorhombic system with space group $P2_12_12_1$.

This research has been supported by grants from the Structural Chemistry Research Laboratory of the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and the National Science Foundation of China.

References

- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Tables 2.2A, 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, pp. 64–71. Delft Univ. Press.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MULLER, A., BOGGE, H. & SCHIMANSKI, U. (1980). Angew. Chem. Int. Ed. Engl. 19, 654-657.
- WU, X. T., LU, L. F., ZHU, L. Y., WU, Q. J. & LU, J. X. (1987). Inorg. Chim. Acta, 113, 43–47.

Acta Cryst. (1989). C45, 1072-1073

Magnesium Galactarate Dihydrate

BY B. SHELDRICK AND W. MACKIE

Astbury Department of Biophysics, University of Leeds, Leeds LS2 9JT, England

(Received 11 January 1989; accepted 22 February 1989)

Abstract. $Mg^{2+}.C_6H_8O_8^{2-}.2H_2O$, $M_r = 268.46$, monoclinic, Cc, a = 7.605 (1), b = 8.785 (2), c = 16.404 (2) Å, $\beta = 92.56$ (1)°, V = 1094.9 Å³, Z = 8, $D_x = 1.63$ g cm⁻³, λ (Cu Ka) = 1.5418 Å, $\mu = 6.17$ cm⁻¹, F(000) = 276, T = 293 K, R = 0.052 for 862 observed reflections and 105 parameters refined. The galactarate ion is centrosymmetrical and the Mg²⁺ ion is six-coordinated (octahedral). Mg-O distances are in the range 2.003 (3) to 2.117 (2) Å.

Experimental. The sample was prepared from MgCl₂ and disodium galactarate and crystallized from water. Crystal tabular, $0.15 \times 0.06 \times 0.09$ mm, Enraf– Nonius CAD-4F diffractometer, Ni-filtered Cu Ka; cell parameters from 22 θ measurements in the range $22 < \theta < 40^\circ$; reflections measured for half the sphere of reflection to $2\theta = 140^\circ$ for ranges of *h*, *k* and *l* of -9 to 9, 0 to 10 and -20 to 20 respectively; 1535 reflections measured plus 628 with $[F < 3\sigma(F)]$; inten-

Fig. 1. x-axis projection of the anion showing the numbering scheme. Drawn using ORTEP (Johnson, 1965).

Fig. 2. Diagram showing the packing in the unit cell. Drawn using *PLUTO* (Motherwell & Clegg, 1978).

© 1989 International Union of Crystallography

Table 1. Atom positions $(\times 10^4)$ and equivalent isotropic thermal parameters $(Å^2 \times 10^4)$

$$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* a_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{co}
Mg	0	3878 (2)	2500	268
C1	-995 (4)	2044 (3)	3886 (2)	286
C2	456 (4)	3034 (3)	4294 (2)	265
C3	1674 (4)	2056 (3)	4844 (2)	254
011	-1824 (3)	1157 (2)	4316 (2)	378
012	-1280 (3)	2230 (3)	3130(1)	370
O2	1346 (3)	3769 (2)	3656 (1)	300
O3	2222 (3)	742 (2)	4421 (1)	314
O10	-1707 (4)	5458 (4)	2853 (2)	550

difference Fourier synthesis showed a maximum value of 0.25 and a minimum value of $-0.371 \text{ e} \text{ Å}^{-3}$; atom scattering factors from *International Tables for X-ray Crystallography* (1974).

Fig. 1 shows the anion and numbering scheme and Fig. 2 the packing of the molecules in the unit cell. Table 1* lists atom parameters; Table 2 gives bond distances and angles. Each Mg^{2+} ion bridges two galactarate ions and the coordination of the Mg^{2+} ion is octahedral as is normally found (Brown, 1988).

Related literature. The galactarate ion has been studied as the Ca²⁺ and Ba²⁺ salts (Sheldrick, Mackie & Akrigg, 1989), while the coordination of Ca²⁺ with the glucarate ion has been established (Burden, Mackie & Sheldrick, 1985; Taga & Osaki, 1976) where the Ca–O distances agree with values given by Dheu-Andries & Perez (1983). Table 2. Bond lengths (Å) and angles (°) with e.s.d.'s

C1-011	1.242 (4)	C2-C3	1.529 (4)		
C1012	1.260 (4)	C3–O3	1.419 (3)		
C1-C2	1.535 (4)	C3–C3′	1.547 (5)		
C2-O2	1.425 (3)		(-)		
011C1012	124.9 (3)	O2-C2-C3	113-1 (2)		
O11-C1-C2	118-8 (3)	C2-C3-O3	110-6 (2)		
O12-C1-C2	116-3 (2)	C2–C3–C3′	101-3 (3)		
C1-C2-O2	107.0 (2)	O3-C3-C3'	99.3 (3)		
C1-C2-C3	110-1 (2)				
Magnesium coordination					
Mg-012 (012')	2.050(2)	Mg-02(02')	2.117(2)		
Mg-O10 (O10')	2.003 (3)		2 11 (2)		
O2-Mg-O12	74.8 (1)	O12-Mg-O12'	90.1 (1)		
O10MgO12	90·9 (1)	O10-Mg-O10'	92·3 (2)		
O10-Mg-O2	93·8 (1)	U U			
-					

References

- BROWN, I. D. (1988). Acta Cryst. B44, 545-553.
- BURDEN, C., MACKIE, W. & SHELDRICK, B. (1985). Acta Cryst. C41, 693-695.
- DHEU-ANDRIES, M. L. & PEREZ, S. (1983). Carbohydr. Res. 124, 324-332.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SHELDRICK, B, MACKIE, W. & AKRIGG, D. (1989). Acta Cryst. C45, 191–194.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 175–189. Oxford Univ. Press.
- TAGA, T. & OSAKI, K. (1976). Bull. Chem. Soc. Jpn, 49, 1517–1520.

Acta Cryst. (1989). C45, 1073-1076

Structure of the Sodium Salt of a Thiazolopyrimidine, a Guanine Analog

BY STEVEN B. LARSON, JACK D. ANDERSON, HOWARD B. COTTAM AND ROLAND K. ROBINS

Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA

(Received 26 September 1988; accepted 16 November 1988)

Abstract. Sodium pentahydrate salt of 2,5-diamino-[1,3]thiazolo[4,5-d]pyrimidin-7(6H)-one, $[C_{5}H_{4}N_{5}-OS]^{-}.[Na(H_{2}O)_{5}]^{+}, M_{r} = 295 \cdot 25, \text{ triclinic, } PI, a = 6 \cdot 9985 (9), b = 8 \cdot 8182 (15), c = 10 \cdot 868 (2) Å, a = 111 \cdot 83 (3), \beta = 99 \cdot 83 (2), \gamma = 94 \cdot 18 (2)^{\circ}, V = 606 \cdot 6 (2) Å^{3}, Z = 2, D_{x} = 1 \cdot 616 \text{ g cm}^{-3}, \lambda(\text{Cu } Ka) =$

0108-2701/89/071073-04\$03.00

1.54178 Å, $\mu = 30.009 \text{ cm}^{-1}$, F(000) = 308, T = 295 K, R = 0.0358 for 2411 reflections ($F \ge 4\sigma_F$). The thiazole and pyrimidinone rings are planar [r.m.s. deviation: 0.0059 (6) and 0.0095 (6) Å, respectively]; the dihedral angle between these planes is 1.13 (5)°. The C-S bond lengths are nearly equivalent

© 1989 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51803 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.